Degenerate Group Movements. Degenerate Acyl Migrations in Pyrazole Chemistry

By J. CASTELLS*

(Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Barcelona, Cerdanyola,

Barcelona, Spain)

M. A. MERINO and M. MORENO-MAÑAS

(Instituto de Química Orgánica, Patronato "Juan de La Cierva," Jorge Girona Salgado s/n, Barcelona-17, Spain)

Summary Variable-temperature n.m.r. studies show the existence of degenerate NN-acyl migration in 1-anilino-carbonyl-3,5-dimethylpyrazole (Ia).

WE present here evidence for degenerate NN-acyl migration in the pyrazole (Ia), which, to the best of our knowledge, is the first example of degenerate NN-group movement in an uncharged species; there are a few reported examples¹ of the related degenerate OO-migration and recently the trimethylsilyl NN-exchange in the anion from tris(trimethylsilyl)hydrazine has been reported.²

At 29°, the pyrazole (Ia) shows† two narrow methyl n.m.r. peaks at τ 7.57 and 8.05; at 130° the spectrum remains substantially unchanged but at 170° considerable broadening of the bands is observed and at 195° the two methyl absorptions coalesce. At 215°, the spectrum shows a single band at τ 7.80 (ω_{\downarrow} 32 Hz), corresponding to a rapid (n.m.r. time-scale) transfer of the acyl group. On cooling, there is no change in the original spectrum.

No fast exchange was observed in the n.m.r. spectra of the pyrazoles (Ib—d) up to 200° ; however, (Id), at *ca*. 200° , showed some broadening of the ring t-butyl peaks.

When mixed samples of the pyrazoles (Ie) and (If) and of (Ia) and (Ig) are heated at ca. 200° in α -chloronaphthalene, mixtures of all four pyrazoles are obtained (n.m.r. spectro-

 \dagger All spectra were recorded in α -chloronaphthalene.

scopy). These crossing experiments indicate that intermolecular acyl exchange takes place, but do not exclude the possibility of a simultaneous intramolecular migration; furthermore, it is not yet established if the intermolecular exchange is direct or if it takes place through reversible dissociation of the arylaminocarbonylpyrazoles into pyrazole and arylisocyanate.³

M.p.s in agreement with literature values and spectral data consistent with the proposed structures (Ia-g) were obtained.

(Received, 25th February 1972; Com. 316.)

¹ H. Shanan-Atidi and Y. Shvo, *Tetrahedron Letters*, 1971, 603; Yu-Neng Kuo, F. Chen, and C. Ainsworth, *Chem. Comm.*, 1971, 138; I. C. Calder, D. W. Cameron, and M. D. Sidell, *ibid.*, p. 360; T. J. Pinnavaia, W. T. Collins, and J. J. Howe, *J. Amer. Chem. Soc.*, 1970, 92, 4544.

² R. West and B. Bichlmeir, J. Amer. Chem. Soc., 1972, 94, 1649.

⁸ W. Otting and H. A. Staab, Annalen, 1959, 622, 23.